If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(-18(t^2-100))/(t^2+5t+100)^2=0
Domain of the equation: (t^2+5t+100)^2!=0We multiply all the terms by the denominator
t∈R
(-18(t^2-100))=0
We calculate terms in parentheses: +(-18(t^2-100)), so:We get rid of parentheses
-18(t^2-100)
We multiply parentheses
-18t^2+1800
Back to the equation:
+(-18t^2+1800)
-18t^2+1800=0
a = -18; b = 0; c = +1800;
Δ = b2-4ac
Δ = 02-4·(-18)·1800
Δ = 129600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{129600}=360$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-360}{2*-18}=\frac{-360}{-36} =+10 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+360}{2*-18}=\frac{360}{-36} =-10 $
| 180=20x-1+30x-3+11x+1 | | (-18t^2-1800)/(t^2+5*t+100)^2=0 | | (-18t^2+90t+1800)/(t^2+5*t+100)^2=0 | | 291.50/1.8+x/0.80=250 | | 180=2x+10+4x-36+4x-34 | | 5x+7+82=180 | | 4p^2+3=83 | | 4w-4=5w-8 | | 250/1.30+x/0.8=291.50 | | 180=x+28+x-28+x | | 20-6+4w=2-2w | | 12w-4=14w-10 | | -w+2+4w=8-3w | | 180=6x+19+3x-6+5x-15 | | 7w=-(2w-18) | | 3(6-w)-4=3w-4 | | 180=x+12+2x-29+x+5 | | 4w-3=3(3w+4)= | | 180=8x-3+6x+8x+7 | | 6x^2-15x-11=0 | | -2x-5=49 | | x-5=140 | | 59+x+20+x+69+x+29=360 | | 2x+5+3x=0 | | a(0.5a-10)=0 | | ^2x=x-30 | | 2b-5=21-7b | | Y=13000*1.06^x | | 2x2-7x-85=0 | | b2-b-20=0 | | 6^3x=36^x+2 | | (3x-4)^(3/2)-14=13 |